Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtre
Ajouter des filtres

Les sujets
Gamme d'année
1.
medrxiv; 2023.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2023.10.30.23297466

Résumé

The SARS-CoV-2 XBB is a group of highly immune-evasive lineages of the Omicron VOC that emerged by recombining BA.2-descendent lineages and spread worldwide during 2023. In this study, we combine SARS-CoV-2 genomic data (n = 11,065 sequences) with epidemiological data of Severe Acute Respiratory Infection (SARI) cases collected in Brazil between October 2022 and July 2023 to reconstruct the space-time dynamics and epidemiologic impact of XBB dissemination in the country. Our analyses revealed that the introduction and local emergence of lineages carrying convergent mutations within the Spike protein, especially F486P, F456L, and L455F, propelled the spread of XBB* lineages in Brazil. The average relative instantaneous reproduction numbers of XBB*+F486P, XBB*+F486P+F456L, and XBB*+F486P+ F456L+L455F lineages in Brazil were estimated to be 1.24, 1.33, and 1.48 higher than that of other co-circulating lineages (mainly BQ.1*/BE*), respectively. Despite such a growth advantage, the dissemination of these XBB* lineages had a reduced impact on Brazils epidemiological scenario concerning previous Omicron subvariants. The peak number of SARI cases from SARS-CoV-2 during the XBB wave was approximately 90%, 80%, and 70% lower than that observed during the previous BA.1*, BA.5*, and BQ.1* waves, respectively. These findings revealed the emergence of multiple XBB lineages with progressively increasing growth advantage, yet with relatively limited epidemiological impact in Brazil throughout 2023. The XBB*+F486P+F456L+L455F lineages stand out for their heightened transmissibility, warranting close monitoring in the months ahead.

2.
Front Med (Lausanne) ; 9: 1008600, 2022.
Article Dans Anglais | MEDLINE | ID: covidwho-2281467

Résumé

Recombination events have been described in the Coronaviridae family. Since the beginning of the SARS-CoV-2 pandemic, a variable degree of selection pressure has acted upon the virus, generating new strains with increased fitness in terms of viral transmission and antibody scape. Most of the SC2 variants of concern (VOC) detected so far carry a combination of key amino acid changes and indels. Recombination may also reshuffle existing genetic profiles of distinct strains, potentially giving origin to recombinant strains with altered phenotypes. However, co-infection and recombination events are challenging to detect and require in-depth curation of assembled genomes and sequencing reds. Here, we present the molecular characterization of a new SARS-CoV-2 recombinant between BA.1.1 and BA.2.23 Omicron lineages identified in Brazil. We characterized four mutations that had not been previously described in any of the recombinants already identified worldwide and described the likely breaking points. Moreover, through phylogenetic analysis, we showed that the newly named XAG lineage groups in a highly supported monophyletic clade confirmed its common evolutionary history from parental Omicron lineages and other recombinants already described. These observations were only possible thanks to the joint effort of bioinformatics tools auxiliary in genomic surveillance and the manual curation of experienced personnel, demonstrating the importance of genetic, and bioinformatic knowledge in genomics.

3.
Frontiers in medicine ; 9, 2022.
Article Dans Anglais | EuropePMC | ID: covidwho-2058471

Résumé

Recombination events have been described in the Coronaviridae family. Since the beginning of the SARS-CoV-2 pandemic, a variable degree of selection pressure has acted upon the virus, generating new strains with increased fitness in terms of viral transmission and antibody scape. Most of the SC2 variants of concern (VOC) detected so far carry a combination of key amino acid changes and indels. Recombination may also reshuffle existing genetic profiles of distinct strains, potentially giving origin to recombinant strains with altered phenotypes. However, co-infection and recombination events are challenging to detect and require in-depth curation of assembled genomes and sequencing reds. Here, we present the molecular characterization of a new SARS-CoV-2 recombinant between BA.1.1 and BA.2.23 Omicron lineages identified in Brazil. We characterized four mutations that had not been previously described in any of the recombinants already identified worldwide and described the likely breaking points. Moreover, through phylogenetic analysis, we showed that the newly named XAG lineage groups in a highly supported monophyletic clade confirmed its common evolutionary history from parental Omicron lineages and other recombinants already described. These observations were only possible thanks to the joint effort of bioinformatics tools auxiliary in genomic surveillance and the manual curation of experienced personnel, demonstrating the importance of genetic, and bioinformatic knowledge in genomics.

4.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.09.21.22280193

Résumé

ABSTRACT The SARS-CoV-2 variants of concern (VOCs) Delta and Omicron spread globally during mid and late 2021, respectively, with variable impact according to the immune population landscape. In this study, we compare the dissemination dynamics of these VOCs in the Amazonas state, one of Brazil’s most heavily affected regions. We sequenced the virus genome from 4,128 patients collected in Amazonas between July 1st, 2021 and January 31st, 2022 and investigated the lineage replacement dynamics using a phylodynamic approach. The VOCs Delta and Omicron displayed similar patterns of phylogeographic spread but significantly different epidemic dynamics. The Delta and Omicron epidemics were fueled by multiple introduction events, followed by the successful establishment of a few local transmission lineages of considerable size that mainly arose in the Capital, Manaus. The VOC Omicron spread and became dominant much faster than the VOC Delta. We estimate that under the same epidemiological conditions, the average Re of Omicron was ∼3.3 times higher than that of Delta and the average Re of the Delta was ∼1.3 times higher than that of Gamma. Furthermore, the gradual replacement of Gamma by Delta occurred without an upsurge of COVID-19 cases, while the rise of Omicron fueled a sharp increase in SARS-CoV-2 infection. The Omicron wave displayed a shorter duration and a clear decoupling between the number of SARS-CoV-2 cases and deaths compared with previous (B.1.* and Gamma) waves in the Amazonas state. These findings suggest that the high level of hybrid immunity (infection plus vaccination) acquired by the Amazonian population by mid-2021 was able to limit the spread of the VOC Delta and was also probably crucial to curb the number of severe cases, although not the number of VOC Omicron new infections.


Sujets)
COVID-19
5.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.11.29.21266109

Résumé

The rapid spread of the SARS-CoV-2 Variant of Concern (VOC) Gamma during late 2020 and early 2021 in Brazilian settings with high seroprevalence raised some concern about the potential role of reinfections in driving the epidemic. Very few cases of reinfection associated with the VOC Gamma, however, have been reported. Here we describe 25 cases of SARS-CoV-2 reinfection confirmed by real-time RT-PCR twice within months apart in Brazil. SARS-CoV-2 genomic analysis confirmed that individuals were primo-infected between March and December 2020 with distinct viral lineages, including B.1.1, B.1.1.28, B.1.1.33, B.1.195 and P.2, and then reinfected with the VOC Gamma between 3 to 12 months after primo-infection. The overall mean cycle threshold (Ct) value of the first (25.7) and second (24.5) episodes were roughly similar for the whole group and 14 individuals displayed mean Ct values < 25.0 at reinfection. Sera of 14 patients tested by plaque reduction neutralization test after reinfection displayed detectable neutralizing antibodies against Gamma and other SARS-CoV-2 variants (B.1.33, B.1.1.28 and Delta). All individuals have milder or no symptoms after reinfection and none required hospitalization. The present study demonstrates that the VOC Gamma was associated with reinfections during the second Brazilian epidemic wave in 2021 and raised concern about the potential infectiousness of reinfected subjects. Although individuals here analyzed failed to mount a long-term sterilizing immunity, they developed a high anti-Gamma neutralizing antibody response after reinfection that may provide some protection against severe disease.

6.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.11.25.21266251

Résumé

The SARS-CoV-2 Variant of Concern (VOC) Delta was first detected in India in October 2020. The first imported cases of the Delta variant in Brazil were identified in April 2021 in the Southern region, followed by more cases in different country regions during the following months. By early September 2021, Delta was already the dominant variant in the Southeastern (87%), Southern (73%), and Northeastern (52%) Brazilian regions. This work aimed to understand the spatiotemporal dissemination dynamics of Delta in Brazil. To this end, we employed a combination of Maximum Likelihood (ML) and Bayesian methods to reconstruct the evolutionary relationship of 2,264 of VOC Delta complete genomes (482 from this study) recovered across 21 out of 27 Brazilian federal units. Our phylogeographic analyses identified three major transmission clusters of Delta in Brazil. The clade BR-I (n = 1,560) arose in Rio de Janeiro in late April 2021 and was the major cluster behind the dissemination of the VOC Delta in the Southeastern, Northeastern, Northern, and Central-Western regions. The clade BR-II (n = 207) arose in the Parana state in late April 2021 and aggregated the largest fraction of sampled genomes from the Southern region. Lastly, the clade BR-III emerged in the Sao Paulo state in early June 2021 and remained mostly restricted to this state. In the rapid turnover of viral variants characteristic of the SARS-CoV-2 pandemic, Brazilian regions seem to occupy different stages of an increasing prevalence of the VOC Delta in their epidemic profiles. This process demands continuous genomic and epidemiological surveillance toward identifying and mitigating new introductions, limiting their dissemination, and preventing the establishment of more significant outbreaks in a population already heavily affected by the COVID-19 pandemic.


Sujets)
COVID-19
7.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.07.05.21259760

Résumé

During the first nine months of the SARS-CoV-2 pandemic, Uruguay successfully kept it under control, even when our previous studies support a recurrent viral flux across the Uruguayan-Brazilian border that sourced several local outbreaks in Uruguay. However, towards the end of 2020, a remarkable exponential growth was observed and the TETRIS strategy was lost. Here, we aimed to understand the factors that fueled SARS-CoV-2 viral dynamics during the first epidemic wave in the country. We recovered 84 whole viral genomes from patients diagnosed between November, 2020 and February, 2021 in Rocha, a sentinel eastern Uruguayan department bordering Brazil. The lineage B.1.1.28 was the most prevalent in Rocha during November-December 2020, P.2 became the dominant one during January-February 2021, while the first P.1 sequences corresponds to February, 2021. The lineage replacement process agrees with that observed in several Brazilian states, including Rio Grande do Sul (RS). We observed a one to three month delay between the appearance of P.2 and P.1 in RS and their subsequent detection in Rocha. The phylogenetic analysis detected two B.1.1.28 and one P.2 main Uruguayan SARS-CoV-2 clades, introduced from the southern and southeastern Brazilian regions into Rocha between early November and mid December, 2020. One synonymous mutation distinguishes the sequences of the main B.1.1.28 clade in Rocha from those widely distributed in RS. The minor B.1.1.28 cluster, distinguished by several mutations, harbours non-synonymous changes in the Spike protein: Q675H and Q677H, so far not concurrently reported. The convergent appearance of S:Q677H in different viral lineages and its proximity to the S1/S2 cleavage site raise concerns about its functional relevance. The observed S:E484K-VOI P.2 partial replacement of previously circulating lineages in Rocha might have increased transmissibility as suggested by the significant decrease in Ct values. Our study emphasizes the impact of Brazilian SARS-CoV-2 epidemics in Uruguay and the need of reinforcing real-time genomic surveillance on specific Uruguayan border locations, as one of the key elements for achieving long-term COVID-19 epidemic control.


Sujets)
Rétinoschisis , COVID-19
9.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-275494.v1

Résumé

The Northern Brazilian state of Amazonas is one of the most heavily affected country regions by the COVID-19 epidemic and experienced two exponential growing waves in early and late 2020. Through a genomic epidemiology study based on 250 SARS-CoV-2 genomes from different Amazonas municipalities sampled between March 2020 and January 2021 we revealed that the first exponential growth phase was driven mostly by the dissemination of lineage B.1.195 which was gradually replaced by lineage B.1.1.28. The second wave coincides with the emergence of the variant of concern (VOC) P.1 which evolved from a local B.1.1.28 clade in late November and rapidly replaced the parental lineage in less than two months. Our findings support that successive lineage replacements in Amazonas were driven by a complex combination of variable levels of social distancing measures and the emergence of a more transmissible VOC P.1 virus. These data provide unique insights to understanding the mechanisms that underlie the COVID-19 epidemic waves and the risk of disseminating SARS-CoV-2 VOC P.1 in Brazil and potentially worldwide.


Sujets)
COVID-19
10.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.01.06.20249026

Résumé

Summary Background: Uruguay is one of the few countries in the Americas that successfully contained the COVID-19 epidemic during the first half of 2020. Nevertheless, the intensive human mobility across the dry border with Brazil is a major challenge for public health authorities. We aimed to investigate the origin of SARS-CoV-2 strains detected in Uruguayan localities bordering Brazil as well as to measure the viral flux across this ~1,100 km uninterrupted dry frontier. Methods: Using complete SARS-CoV-2 genomes from the Uruguayan-Brazilian bordering region and phylogeographic analyses, we inferred the virus dissemination frequency between Brazil and Uruguay and characterized local outbreak dynamics during the first months (May-July) of the pandemic. Findings: Phylogenetic analyses revealed multiple introductions of SARS-CoV-2 Brazilian lineages B.1.1.28 and B.1.1.33 into Uruguayan localities at the bordering region. The most probable sources of viral strains introduced to Uruguay were the Southeast Brazilian region and the state of Rio Grande do Sul. Some of the viral strains introduced in Uruguayan border localities between early May and mid-July were able to locally spread and originated the first outbreaks detected outside the metropolitan region. The viral lineages responsible for Uruguayan suburban outbreaks were defined by a set of between four and 11 mutations (synonymous and non-synonymous) respect to the ancestral B.1.1.28 and B.1.1.33 viruses that arose in Brazil, supporting the notion of a rapid genetic differentiation between SARS-CoV-2 subpopulations spreading in South America. Interpretation: Although Uruguayan borders have remained essentially closed to non-Uruguayan citizens, the inevitable flow of people across the dry border with Brazil allowed the repeated entry of the virus into Uruguay and the subsequent emergence of local outbreaks in Uruguayan border localities. Implementation of coordinated bi-national surveillance systems are crucial to achieve an efficient control of the SARS-CoV-2 spread across this kind of highly permeable borderland regions around the world.


Sujets)
COVID-19
SÉLECTION CITATIONS
Détails de la recherche